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Abstract: Fully analytic formulas, which do not involve any numerical integration, are derived for the discretized 

influence functionals of a very extensive assortment of spectral distributions. For Feynman integrals derived using 

the Trotter splitting and Strang splitting, we present general formulas for the discretized influence functionals in 
terms of proper integrals of the bath response function. When an analytic expression exists for the bath response 

function, these integrals can almost always be evaluated analytically. In cases where these proper integrals cannot be 

integrated analytically, numerically computing them is much faster and less error-prone than calculating the 

discretized influence functionals in the traditional way, which involves numerically calculating integrals whose 

bounds are both infinite. As an example, we present the analytic discretized influence functional for a bath response 

function of the form  

 
which is a natural form for many spectral distribution functions (including the very popular Lorentz-Drude/Debye 

function), and for other spectral distribution functions it is a form that is easily obtainable by a least-squares fit. 

Evaluating our analytic formulas for this example case is much faster and more rigorous than numerically 
calculating the discretized influence functional in the traditional way. In the appendix we provide analytic 

expressions for pj and Ωj for a variety of spectral distribution forms, and as a second example we provide the 

analytic bath response function and analytic influence functionals for spectral distributions of the form  

 
The value of the analytic expression for this bath response function extends beyond its use for calculating Feynman 

integrals. We also provide open source MATLAB and Mathematica programs to make the results of this paper very 

easy to implement. 
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INTRODUCTION

Influence functionals are used to describe the environment’s influence on the reduced density operator dynamics (RρD) of open
quantum systems (OQSs) in the Feynman integral representation[3, 4, 33]. They have been used since 1959[33] in this framework,
which later became the basis for some of the first successful methods for calculating ‘numerically exact’ RρD in OQSs with large
environments. The most popular model for OQSs is currently a Feynman-Vernon model (see equation 3) with a continuous spectral
distribution J(ω) (see equation 4), in which the entire influence of the OQS’s environment on its RρD is captured by the influence
functional.

The remainder of this paper will deal with this OQS model, for which discretized Feynman integrals that use discretized influence
functionals (DIFs) have been used extensively for calculating the RρD of various OQSs[9, 13, 30]. For this model, these DIFs are
traditionally expressed in terms of improper integrals of J(ω) whose integration bounds are infinite in both directions[14, 15]. The
accuracy of these integrals can be extremely important when using the Feynman integral to numerically calculate RρD in OQSs, and
a converged calculation of them can be very computationally demanding in some cases. Aside from the inconvenience of having to
check for convergence when numerically calculating these integrals, not having an analytic expression for the DIF makes it difficult to
examine properties of it, such as its dependence on the parameters of the physical system and the dependence of its size on the size of
the time steps in the discretization of the Feynman integral.

In this paper we will give a general expression for the DIF, in terms of proper integrals of the bath response function α(t), instead of
improper integrals of J(ω) whose integration bounds are infinite in both directions. As long as α(t) is represented analytically, these
integrals are easy to evaluate analytically, or if they cannot be, they are still much easier to evaluate numerically than the integrals in
the traditional expression for the DIF, since their integration bounds are finite and very tiny.

One particular form for α(t) for which these proper integrals of α(t) can very easily be evaluated, leading to a fully analytic DIF1, is:

α(t) =

K∑
j

pje
Ωjt. (1)

This is a very important form for α(t) for at least two reasons.

(1) Every physically relevant spectral distribution can be fitted to this form, and in fact many very versatile spectral distribution
forms (including the very popular Lorentz-Drude/Debye function) naturally have bath response functions of this form (see table I).

(2) The main purpose of Feynman integrals for RρD in OQSs is to benchmark methods that are less computationally expensive.
When benchmarking, it is ideal for both methods to use the exact same form for α(t), and many of the techniques that one may wish
to benchmark actually require α(t) to be in this form! Some examples include techniques based on the evergreen Nakajima-Zwanzig
equation from late the 1950s[17, 18, 35], the hierarchical equations of motion (HEOM) which provide argubly the most successful and
robust method for calculating RρD in OQSs to date[28, 29], and the very recent NMQSD-ZOFE quantum master equation[26].

For these reasons, we will present analytic expressions for the DIF for this form of α(t) as an example in section II. Table I represents
α(t) in the form of equation 1, with the pj and Ωj parameters expressed analytically in terms of the inverse temperature β and the
parameters of J(ω), for three widely used and versatile classes of spectral distributions, each of which can essentially represent any
physically relevant spectral distribution. The DIF for these spectral distribution functions can then be obtained in analytic form by
substituting these pj and Ωj parameters into our analytc expressions for the DIF for this form of α(t).

Additionally, one of the most widely used forms for J(ω) is J(ω) ∝ ωse−(ω/ωc)
q

[10]. Table I also presents an analytic expression for
α(t) for this form of spectral distribution, for certain values of s when q = 1. The DIF is then obtained in analytic form and presented
in the supplementary material. Likewise, the DIF can be obtained in analytic form for various other spectral distribution forms in the
same way when an analytic form for α(t) exists, whether naturally or by a numerical fit.

The open source Mathematica program that supplements this paper takes in the size of the time step ∆t in the discretization of
the Feynman paths, and any form of α(t) as input; and outputs an analytic form for the DIF if possible, and quickly calculates the
DIF numerically otherwise. This program, and the open source MATLAB program that also supplements this paper, can both readily
calculate the bath response functions and reorganization energies of all four of the general forms of J(ω) presented in table I. The
MATLAB program can also take in any J(ω), and provide α(t) in the form of equation 1 by outputting the fitted values of {pj ,Ωj}.

1 The influence functional is a functional of the Feynman paths and a regular function of all other independent variables. When the Feynman paths s(t)
are discretized with respect to time, they can be represented by a set of variables that are constant with respect to time: {sk}. A discretized influence
functional can therefore be thought of as a functional of discrete paths, or simply a regular function of a set of variables, and it is with respect to these
variables that the DIF is analytic.
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RESULTS

Setting

The most popular OQS model is currently the Feynman-Vernon model. In the Feynman-Vernon model, the OQS s is coupled linearly
to a set of quantum harmonic oscillators Qk:

H = HOQS +HOQS−bath +Hbath (2)

= HOQS +
∑
κ

cκsQ+
∑
κ

(
½mκQ̇κ

2
+ ½mκω

2
κQ

2
κ

)
. (3)

In most models the quantum harmonic oscillators (QHOs) span a continuous spectrum of frequencies ωκ and the strength of the
coupling between the QHO of frequency ω and the OQS is given by the spectral distribution function J(ω):

J(ω) =
π

2

∑
κ

c2κ
mκωκ

δ(ω − ωκ) . (4)

For the hamiltonian of the Feynman-Vernon model, the bath response function α(t) is the following integral transform of J(ω):

α(t) =
1

π

ˆ ∞
0

J(ω)
(

coth
(βω~

2

)
cos(ωt)− i sin(ωt)

)
dω (5)

=
1

2π

ˆ ∞
−∞

J(ω) exp
(
βω~

2

)
sinh

(
βω~

2

) e−iωtdω, J(−ω) ≡ J(ω) (6)

=
1

π

ˆ ∞
−∞

J(ω)

1− exp(−βω~)
e−iωtdω , J(−ω) ≡ J(ω), (7)

where, equation 7 can be written in terms of the Bose-Einstein distribution function with x = −βω~:

fBose−Einstein(x) =
1

1− exp(x)
. (8)

In the Feynman integral formalism for expressing the RρD given this hamiltonian, all the information about the influence of
HOQS−bath +Hbath on the RρD of the OQS is completely captured by the (gaussian) influence phase functional[3, 4]:

Φ[s(t), s′(t)] = −
ˆ t

0

ˆ t′

0

(s(t′)− s′(t′)) (α(t′ − t′′)s(t′′)− α∗(t′ − t′′)s′(t′′)) dt′′dt′ (9)

≡ −
ˆ t

0

ˆ t′

0

Φ̄[s(t′), s′(t′), s(t′′), s′(t′′)]dt′ , (10)

which defines the (gaussian) influence functional:

F [s(t), s′(t)] = exp (Φ) . (11)

In order to numerically calculate a Feynman integral for RρD, we discretize the Feynman paths: {s(t), s′(t)} → {s+
k , s
−
k }Nk=0, such that

each s±k is constant with respect to time.

Trotter Splitting

The simplest way to discretize the Feynman paths is to split them into intervals of equal duration, known as a Trotter splitting. This
allows us to decompose Φ[s(t), s′(t)] into constituent double integrals:

Φ[s(t), s′(t)] = −
N∑
k=0

k−1∑
k′=0

ˆ (k+1)∆t

k∆t

(ˆ (k′+1)∆t

k′∆t
Φ̄[s+

k , s
−
k , s

+
k′ , s

−
k′ ]dt′ +

ˆ t′

k∆t

Φ̄[s+
k , s
−
k , s

+
k , s
−
k ]

)
dt′′ (12)

= −
N∑
k=0

k−1∑
k′=0

(s+
k − s

−
k )(ηkk′s

+
k′ − η

∗
kks
−
k′) , (13)
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where,

ηkk′ =

ˆ (k+1)∆t

k∆t

ˆ (k′+1)∆t

k′∆t
α(t′ − t′′)dt′′dt′ . (14)

ηkk =

ˆ (k+1)∆t

k∆t

ˆ t′

k∆t

α(t′ − t′′)dt′′dt′ (15)

At this stage, most traditionally [12, 14, 15], equation 6 is inserted into the integrand of equations 14 and 15, yielding (when
J(−ω) ≡ −J(ω)):

ηkk′ =
2

π

ˆ ∞
−∞

J(ω)

ω2

exp(β~ω/2)

sinh(β~ω/2)
sin2(ω∆t/2)e−iω∆t(k−k′)dω , 0 ≤ k′ < k ≤ N , and (16)

ηkk =
1

2π

ˆ ∞
−∞

J(ω)

ω2

exp(β~ω/2)

sinh(β~ω/2)
(1− e−iω∆t − i∆tω)dω , 0 ≤ k ≤ N . (17)

Or alternatively [32], one can insert equation 5, yielding:

ηkk′ = 2

ˆ ∞
0

J(ω)

ω2

(
1− cos(∆tω)

)(
cos(∆tω(k − k′)) coth

(
~βω

2

)
− i sin(∆tω(k − k′))

)
dω , 0 ≤ k′ < k ≤ N , and (18)

ηkk =

ˆ ∞
0

J(ω)

ω2

(
1− cos(∆tω)

)
coth

(
~βω

2

)
+ i
(

sin(∆tω)−∆tω
)
dω , 0 ≤ k ≤ N . (19)

However, if α(t) =
∑K
j pje

−Ωjt we can calculate equation 14 analytically to get:

ηkk′ = 4

K∑
j=1

pj
Ω2
j

sinh2(Ωj∆t/2)eΩj(k−k′)∆t , 0 ≤ k′ < k ≤ N (20)

ηkk = 2

K∑
j=1

pj
Ω2
j

(
sinh(Ωj∆t/2)e

Ωj∆t/2 − 1

2
Ωj∆t

)
, 0 ≤ k ≤ N (21)

Figure 1 compares the versions of ηkk′ in equations 16, 18 and 20 as a function of ∆k ≡ k − k′ with ∆t = 0.001ps , along with the
CPU time in Mathematica, for the spectral distribution J(ω) = 0.027ps2ω3e(−ω/2.2ps−1)2

, which comes from a recent experimental study
of quantum dots[22] and was used in at least two recent computational studies[2, 16]. The bath response function for this spectral
distribution was fitted to the form of equation 1 with K = 4, and the fitted parameters {pj ,Ωj} are given in the supplementary
material, along with a figure which demonstrates that there are no discernable differences between the least-squares fit and the original
bath response function obtained by numerical integration. Figure 1 shows that our analytic form for ηkk′ agrees essentially exactly
with the other two forms when they are numerically integrated, but take much less time to compute2. All other analytic η coefficients
in this paper have been compared with essentially exact agreement against previous versions calculated by numerical integration, and
the results of these comparisons are presented in the supplementary material.

Strang Splitting

A more sophisticated discretization of the Feynman paths can be made by a Strang splitting, which allows one to calculate the RρD
much more accurately for a given number of time steps in the discretizaton of the Feynman paths. When this splitting is used, the
above formulas for ηkk′ and ηkk remain the same for 0 < k′ < k < N , but different formulas have to be used when either k or k′, or
both, are 0 or N :

2 The CPU times shown in the figure were measured on a Toshiba Satellite L300 laptop with an Intel Core 2 Duo CPU T5800 processor with a 2.00 GHz
clock rate.
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5

Figure 1. Equations 16, 18 and 20 are equivalent, but equation 20 can be calculated much more efficiently than the other two. Since the values of
these curves on the ordinate axis depend on the size of ∆t (which is a parameter used for numerical computation of the Feynman integral and not
a phsyical characteristic of the system), all of these curves are scaled by the real part of the funciton when ∆k = 0 in order to have the ordinate
axis equal to 1 at most. Here J(ω) = 0.027ps2ω3e(−ω/2.2ps−1)2 , which is often used to study quantum dots[2, 16, 23], and β = 1

kBT
with T = 77K.

Equation 16 was originally presented in [14] and equation 18 was originally presented in [32].

0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

η
k
k
′(
∆
k
)

<
(η

k
k
′(
0
))

Time in picoseconds (∆k∆t where ∆t = 0.001ps)

 

 

1995 Makri & Makarov:
CPU time: 316.152 seconds

2011 Vagov et al. :
CPU time: 374.246 seconds

2012 present work:
CPU time: 0.406 seconds

ηN0 =

ˆ N∆t

N∆t−∆t/2

ˆ ∆t/2

0

α(t′ − t′′)dt′′dt′ (22)

η00 =

ˆ ∆t/2

0

ˆ t′

0

α(t′ − t′′)dt′′dt′ (23)

ηNN =

ˆ N∆t

N∆t−∆t/2

ˆ t′

N∆t−∆t/2

α(t′ − t′′)dt′′dt′ (24)

ηk0 =

ˆ (k+1)∆t

k∆t

ˆ ∆t/2

0

α(t′ − t′′)dt′′dt′ (25)

ηNk =

ˆ N∆t

N∆t−∆t/2

ˆ (k+1)∆t

k∆t

α(t′ − t′′)dt′′dt′ (26)

Again, most traditionally [12, 14, 15] equation 6 is inserted into equations 22 to 26 , which yields (when J(−ω) ≡ −J(ω)):

ηN0 =
2

π

ˆ ∞
−∞

J(ω)

ω2

exp(β~ω/2)

sinh(β~ω/2)
sin2(ω∆t/4)e−iω(t−∆t/2)dω , (27)

η00 = ηNN =
1

2π

ˆ ∞
−∞

J(ω)

ω2

exp(β~ω/2)

sinh(β~ω/2)

(
(1− e−iω∆t/2)− i∆tω/2

)
dω , 0 < k < N (28)

ηk0 =
2

π

ˆ ∞
−∞

J(ω)

ω2

exp(β~ω/2)

sinh(β~ω/2)
sin(ω∆t/4) sin(ω∆t/2)e−iω(k∆t−∆t/4)dω , 0 < k < N, (29)

ηNk =
2

π

ˆ ∞
−∞

J(ω)

ω2

exp(β~ω/2)

sinh(β~ω/2)
sin(ω∆t/4) sin(ω∆t/2)e−iω(t−k∆t−∆t/4)dω , 0 < k < N (30)

In the case of α(t) =
∑K
j pje

Ωjt we again find analytical expressions:
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6

ηN0 = 4

K∑
j=1

pj
Ω2
j

eΩj(t−∆t/2)
(
sinh2(Ωj∆t/4)

)
(31)

η00 = ηNN = 2

M∑
j=1

pj
Ω2
j

(
e

Ωj∆t/4 sinh(Ωj∆t/4)− ∆tΩj/4
)

(32)

ηk0 = 4

K∑
j=1

pj
Ω2
j

sinh(Ωj∆t/2) sinh (Ωj∆t/4) eΩj(k∆t−∆t/4) (33)

ηNk = 4

K∑
j=1

pj
Ω2
j

sinh(Ωj∆t/2) sinh (Ωj∆t/4) eΩj(t−k∆t−∆t/4) (34)

Quasi-adiabatic displacement

When the bath is nearly adiabatic, it is helpful to rewrite equation 3 as [11]:

H = HOQS −Hdisplacement +HOQS−bath +Hbath +Hdisplacement (35)

= HOQS −
∑
κ

c2κs
2

2mκω2
κ

+
∑
κ

cκsQ+
∑
κ

(
½mκQ̇κ

2
+ ½mκω

2
κQ

2
κ

)
+
∑
κ

c2κs
2

2mκω2
κ

(36)

≡ HOQS,displaced +
∑
κ

cκsQ+Hbath,displaced. (37)

Hdisplacement is called the “counter term”, and can also be represented in terms of the spectral distribution by recognizing that when
the QHOs span a continuous spectrum of frequencies ωκ , we have the relation (remembering equation 4):

∑
κ

c2κ
2mκω2

κ

=
1

π

ˆ ∞
0

J(ω)

ω
dω . (38)

The influence of HOQS−bath +Hbath,displaced on the RρD of the displaced OQS is now completely captured by the modified influence
phase functional[12, 14, 15]:

ΦQUAPI[s(t), s
′(t)] = −

ˆ t

0

ˆ t′

0

((
s(t′)− s′(t′)

) (
α(t′, t′′)s(t′′)− α∗(t′, t′′)s′(t′′)

)
+

i

~π

ˆ t

0

ˆ ∞
0

J(ω)

ω
dω
(
s+(t′)2 − s−(t′)2

))
dt′′dt′ , (39)

where QUAPI stands for Quasi-Adiabatic Propagator Feynman3 Integral, which is the name for the resulting Feynman integral for
the RρD of the displaced OQS when this new influence phase functional is used. When the bath is nearly adiabatic, the QUAPI is
more accurate than a Feynman integral that does not make use of this modified influence phase functional, for a given size of the time
step used in the discretizaton of the Feynman paths. The new term in the influence phase functional adds the following term to the
ηkk′ coefficients when k = k′:

***QUAPI =
i∆t

~π

ˆ ∞
0

J(ω)

ω
dω (40)

≡ i∆t

~π
λ , (41)

where in the last line we have defined the “bath reorganization energy” by λ. In equations 16 to 19, and 27 to 30, equation 40 can
simply be incorporated into the integrals over ω, but our versions (equations 20, 21, and 31 to 34) are no longer analytic unless an
analytic expression exists for λ. Fortunately an analytic expression exists for λ for most forms of J(ω). Table I presents analytic
expressions for some of the most popular forms of J(ω).

3 The term ‘path integral’ is used more commonly than ‘Feynamn integral’ here, but this term is ambiguous. Currently, the first result on the search engine
at www.google.com, when the search query ‘path integral’ is entered, is a Wikipedia page that currently links to three different meanings of the word ‘path
integral’: (1) line integral, (2) functional integration, and (3) path integral formulation. Only the third of these is unambiguously the Feynman integral
discussed in this paper. The ‘line integral’ is an integral over a path, rather than over a set of paths; and the term ‘functional integral’ can refer to at least
three types of functional integrals: (1) the Wiener integral, (2) the Lévy integral, and (3) the Feynman integral.
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7

New class of spectral distributions whose bath response functions are analytically expressed as α(t) =
∑K
j pje

Ωjt.

This formula is good for testing the spectral distribution corresponding to a bath response function obtained by a least-squares fit,
or obtained by a truncation of the (exact) infinite series expression for α(t) table (see table I for some examples).

J(ω) = < 1

π
(1− e−βω)

K∑
j

ipj
ω − iΩj

(42)

CONCLUSIONS

We have presented general formulas for the η coefficients in the discretized influence functional of the Feynman-Vernon model, in
terms of the bath response function. These formulas can then be used to derive the form of the η coefficients presented by Makarov
and Makri in 1995[14, 15], and the form presented by Vagov et al. in 2011[32], both which involve improper integrals of the spectral
distribution and have at least one infinite integration bound. However, when the bath response function can be expressed analytically
(which is almost always the case, as shown in table I), our general formulas for the η coefficients can almost always be derived analytically
too. Figure 1 shows that the evaluation of these analytic formulas can be more than 900 times faster than obtaining the exact same
results by numerically integrating forms for the η coefficients in the traditional ways.

If there is a case where the bath response function can be expressed analytically, but the integrals in equation 14, 15 and/or 22 to
26 cannot be evaluated analytically (we do not know of such a case, but cannot rule out the possibility that it exists), we recommend
to numerically integrate these equations, rather than to numerically integrate the more traditional forms presented in equations 16
to 19 and 27 to 30. This is because these integrals have finite bounds, which are very small (about the size of the time steps in the
discretization of the Feynman paths), while the more traditional forms involve numerically integrating the spectral distribution over
infinite bounds.

When the bath response function cannot be expressed analytically, it may still be more convenient to obtain it by numerically
integrating equation 5, 6 or 7, and then to fit it to a sum of complex-weighted complex exponentials. This is because Feynman integrals
for calculating the reduced density operator dynamics in open quantum systems are usually used for benchmarking other techniques,
and many popular techniques require this form for the bath response function, and when benchmarking it is always best to keep as
many parameters of the model consistent across all methods being benchmarked. When fitting a bath response function to this form,
equation 42 is useful for testing the quality of the fit in terms of how well the fitted bath response function corresponds to the original
desired spectral distribution. This formula is equally useful in cases when the bath response function is naturally represented in the
form of equation 1 (as in the examples in table I), since it can give an indication of how many terms in the infinite series are required in
order to be sure that one is using a bath response function which corresponds to a spectral distribution similar enough to the original
desired one.

SPECIAL CASES (APPENDIX)

The results in equations 20, 21 and 31 to 34 can readily be applied for many of the spectral distributions listed in table I, by
substituting the appropriate values of pj and Ωj .

One of the most popular spectral distribution forms is currently the Lorentz-Drude/Debye (LDD) form which has been used exten-
sively in experimental determinations of spectral distributions [24, 25, 34], and in various OQS studies ([8] and various other studies of
this same system that compare to this result, including ones involving DIFs for Feynman integrals [19, 20]):

J(ω) =
ω

π

λγ

γ2 + ω2
. (43)

The first spectral distribution form presented in table I is a generalization of this LDD form, which allows for multiple peaks to be
included at various locations defined by {ω̃j}. In the case where only one term in the sum exists, and ω̃ = 0, equation 43 is recovered.
The bath response function for equation 43 can be obtained analytically in the form of equation 1 by a simple application of residue
calculus, leading to the well-known Matsubara series. Since the Matsubara series converges extremely slowly, we have presented a series
based on the very recent [N-1/N] Padé decomposition technique in [7] (a more clever application of residue calculus), which is also
of the form in equation 1, but converges with much fewer terms. The label [N-1/N] denotes that the Padé approximant is a rational
funciton where the numerator is a polynomial of degree N-1, and the denominator is a polynomial of degree N. N effectively becomes
the number of exponential terms in α(t) that specifically arise due to this technique for expressing α(t) in the form of equation 1 (more
details about this technique can be found in [6, 7]).4 This representation of α(t) becomes more and more accurate as N is

4 N is therefore different from N that was used throughout this paper to denote the number of time steps used in the discretization of the Feynman paths.
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increased. The Padé parameters {ξn,Ξn} are given in table II. The total number of terms in α(t) is given by K = 2J +N , where J
is the number lorentzian terms of each type in J(ω).

The second spectral distribution form presented in the table below is used in studies where the J(ω) for a system is predicted
using a molecular dynamics simulation[1, 21]. It is the same as the first spectral distribution form in table I, but with the prefactor
ω replaced by tanh(βω2 ) in an attempt to remove the temperature dependence of J(ω) which is inherent due to the nature of the
molecular dynamics technique that is used to calculate it. As for the first J(ω) presented, the bath response function for this J(ω) was
put into the form of equation 1 by the Padé decomposition, except that in this case only the imaginary component requires a Padé
decomposition treatment. The total number of terms in α(t) is again given by K = 2J +N .

The third spectral distribution form presented is known as the Meier-Tanor decomposition and has been widely used since its
introduction in 1999[17]. It is similar to forms used for the spectral distribution function in [27] and [31]. Here we do not use a Padé
decomposition treatment, but rather present the same representation of α(t) in the form of equation 1 as was originally presented by
Meier and Tanor (using a Matsubara-style decomposition) in [17]. The total number of terms in α(t) is again given by K = 2J + N ,
where N now denotes the number of terms contributed by the Matsubara-style decomposition. Once again, this representation of α(t)
beocmes more and more accurate as N is increased.

Finally, formulas 14, 15 and 22 to 26 can readily be applied to other spectral distribution functions when an analytic expression for
α(t) exists. One very popular class of spectral distribution functions for which α(t) can be calculated analytically (resulting in a form
different from equation 1) is the class of functions of the form J(ω) ∝ ωse−(ω/ωc)

q

. An analytic form for α(t) and the reorganization
energy λ for this class of spectral distribution functions is presented in table I below. The result of evaluating this formula is compared
to the α(t) obtained by numerical integration with essentially exact agreement, and this comparison is presented in the supplementary
material.
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Table I. Analytic formulas for the bath response functions α(t) and reorganization energies λ of various selected spectral distribution functions.
For the first three cases, K = 2J + N , where N is the number of terms in α(t) arising from the Padé (for the first two forms of J(ω)) or
Matsubara-style (for the third form of J(ω)) decomposition. All formulas presented here can be computed easily for any value of K in our open
source MATLAB program that supplements this paper. ψs(·) is the polygamma function, which is a built-in function that is evaluated quickly in
MATLAB, Mathematica, and most computing software.

J(ω) = ω
π

∑J
j

(
λjγj

γ2
j+(ω−ω̃j)2

+
λjγj

γ2
j+(ω+ω̃j)2

)
α(t) =

∑K
j pje

Ωjt

pj=



λj
β

(
1−

∑N
n=1

2ΞnΩ2
j

ν2
n−Ω2

j

)
+ i

λjΩj
2

, j ∈ [0, J ]

λj
β

(
1−

∑N
n=1

2ΞnΩ2
j

ν2
n−Ω2

j

)
+ i

λjΩj
2

, j ∈ [J + 1, 2J ]

−
∑J
m=1

4λmγm
β

Ξjνj

(
|Ωm|2−ν2

j

)
|ν2
j−Ω2

m|2
, j ∈ [2J + 1,K]

Ωj =


−γj + iω̃j , j ∈ [0, J ]

−γj − iω̃j , j ∈ [J + 1, 2J ]

−νj , j ∈ [2J + 1,K]

(·)J+j = (·)j
νn = 2πξn

β

λ =
∑J
j λj {ξn,Ξn} are the [N-1/N] Padé parameters for the Bose-Einstein distribution (see table II)

J(ω) = 1
π

tanh
(βω

2

)∑J
j

(
λjγj

γ2
j+(ω−ω̃j)2

+
λjγj

γ2
j+(ω+ω̃j)2

)
α(t) =

∑K
j pje

Ωjt J(ω) introduced by Damjanovic et al. [1, 5]

pj =



λj
2

+ i
2λj
β

∑N
n=1

ΞnΩj
ν2
n−Ω2

j

, j ∈ [0, J ]

λj
2

+ i
2λj
β

∑N
n=1

ΞnΩj
ν2
n−Ω2

j

, j ∈ [J + 1, 2J ]

−i
4Ξj
β

∑J
m=1

γ̃mλ̃m
(
|Ωm|2−ν2

j

)
|ν2
j−Ω2

m|2
, j ∈ [2J + 1,K]

Ωj =


−γj + iω̃j , j ∈ [0, J ]

−γj − iω̃j , j ∈ [J + 1, 2J ]

−νj , j ∈ [2J + 1,K]

(·)J+j = (·)j
νn = 2πξn

β

{ξn,Ξn} =are the [N-1/N] Padé parameters for the Fermi-Dirac distribution (see table II)

J(ω) = πω
2

∑K
j

λj(
γ2
j+(ω+ω̃j)2

)(
γ2
j+(ω−ω̃j)2

) α(t) =
∑K
j pje

Ωjt Meier-Tanor decomposition [17]

pj=



λj
ω̃jγj

(
coth

(β
2

(ω̃j + iγj)
)

+ i

)
, j ∈ [0, J ]

λj
ω̃jγj

(
coth

(β
2

(ω̃j − iγj)
)
− i

)
, j ∈ [J + 1, 2J ]

−π
β

∑N
n=1

νjλn(
γ2
n+(iνj+ω̃n)2

)(
γ2
n+(iνj−ω̃n)2

) , j ∈ [2J + 1,K]

Ωj =


−γj + iω̃j , j ∈ [0, J ]

−γj − iω̃j , j ∈ [J + 1, 2J ]

−νj , j ∈ [2J + 1,K]

(·)J+j = (·)j
νn = 2πn

β

λ = π2

8γ(γ2+ω2
0)

∑K
j λj

J(ω) = Aωse−ω/ωc α(t) = −s!ωs+1
c

(
z + (−1)s+1z∗

)
See [10] for a detailed use of this J(ω)

z ≡
(

1
(ωct+i)s+1

)
−

2<
(
ψs( 1+iωct

βωc
)
)

s!(βωc)s+1 − i sin
(
(s+1) arctan(ωct)

)
(1+ω2

c t
2)(s+1)/2

λ = AωscΓ(s)

J(ω) = Aωse−(ω/ωc)
q
s > 0 , ωc > 0 , q > 0

λ = A
q
ωscΓ( s

q
)
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Table II. [N-1/N] Padé parameters for the Bose-Einstein and Fermi-Dirac distribution functions (first presented in [7] and in more detail in [6]).
{Ξn, ξn} can be calculated easily for all n, for arbitrary values of N in our open source MATLAB program that supplements this paper. The
matrix Λ is a 2N×2N, and Λ̃ is a 2N-1×2N-1. The indices n run from 1 to half the number of non-zero eigenvalues of the corresponding matrix.
The number of non-zero eigenvalues will always be even, because the eigenvalues of these particular matrices come in pairs, for example (ξn,−ξn);
and for matrices with an odd number of eigenvalues, the unpaired eigenvalue will always be 0.

{±ξn} = eigenvalues(Λ−1) {±ζn} = eigenvalues(Λ̃−1)

Bose-Einstein Fermi-Dirac
Λcd =

δc,d±1

2
√

(2c+1)(2d+1)
Λcd =

δc,d±1

2
√

(2c−1)(2d−1)

Λ̃cd =
δc,d±1

2
√

(2c+3)(2d+3)
Λ̃cd =

δc,d±1

2
√

(2c+1)(2d+1)

Ξn = (N2 + 3
2
N)

∏N−1
m=1(ζ2

m−ξ
2
n)∏N

m6=n(ξ2m−ξ2n)
Ξn = (N2 + 1

2
N)

∏N−1
m=1(ζ2

m−ξ
2
n)∏N

m 6=n(ξ2m−ξ2n)
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